메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
변민지 (부산대학교 치의학전문대학원 예방과사회치의학교실) 전은주 (부산대학교 치의학전문대학원 예방과사회치의학교실) 김지수 (전주기전대학 치위생과) 황재준 (부산대학교 치의학전문대학원 영상치의학교실) 정승화 (부산대학교 치의학전문대학원 예방과사회치의학교실)
저널정보
대한예방치과·구강보건학회 대한구강보건학회지 대한구강보건학회지 제45권 제4호
발행연도
2021.12
수록면
227 - 232 (6page)
DOI
https://doi.org/10.11149/jkaoh.2021.45.4.227

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Diagnosis of dental caries is based on the dentist’s observation and subjective judgment; therefore, a reliable and objective approach for diagnosing caries is required. Intraoral camera images combined with deep learning technology can be a useful tool to diagnose caries. This study aimed to evaluate the accuracy of the VGG-16 convolutional neural network (CNN) model in detecting dental caries in intraoral camera images. Methods: Images were obtained from the Internet and websites using keywords linked to teeth and dental caries. The 670 images that were obtained were categorized by an investigator as either sound (404 sound teeth) or dental caries (266 dental caries), and used in this study. The training and test datasets were divided in the ratio of 7:3 and a four-fold cross validation was performed. The Tensorflow-based Python package Keras was used to train and validate the CNN model. Accuracy,Kappa value, sensitivity, specificity, positive predictive value, negative predictive value, ROC (receiver operating characteristic) curve and AUC (area under curve) values were calculated for the test datasets. Results: The accuracy of the VGG-16 deep learning model for the four datasets, through random sampling, was between 0.77 and 0.81, with 0.81 being the highest. The Kappa value was 0.51-0.60, indicating moderate agreement. The resulting positive predictive values were 0.77-0.82 and negative predictive values were 0.80-0.85. Sensitivity, specificity, and AUC values were 0.66-0.74, 0.81-0.88, and 0.88-0.91, respectively. Conclusions: The VGG-16 CNN model showed good discriminatory performance in detecting dental caries in intraoral camera images. The deep learning model can be beneficial in monitoring dental caries in the population.

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0