메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이동호 (충북대학교) 정찬희 (충북대학교) 고승환 (충북대학교) 박종화 (충북대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제6호
발행연도
2021.12
수록면
1,669 - 1,683 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
AI지능화 농업과 디지털 농업은 농업분야 과학화를 위해서 중요하다. 잎 엽록소 함량은 작물의 생육상태를 파악하는데 매우 중요한 지표 중 하나이다. 본 연구는 양파와 마늘을 대상으로 드론 기반 RGB 카메라와 다중분광(MSP)센서를 활용하여 SVM 회귀 모델을 제작하고, MSP 센서와 비교를 실시하여 RGB 카메라의 LCC 추정 적용성을 검토하고자 하였다. 연구 결과 RGB 기반 LCC 모형은MSP 기반 LCC 모형보다 평균 R2에서 0.09, RMSE 18.66, nRMSE 3.46%로 더 낮은 결과를 보였다. 그러나 두 센서 정확도 차이는 크지 않았으며, 다양한 센서와 알고리즘을 활용한 선행연구들과 비교했을 때도 정확도는 크게 떨어지지 않았다. 또한 RGB 기반 LCC 모형은 실제 측정값과 비교하였을 때 현장 LCC 경향을 잘 반영하지만 높은 엽록소 농도에서 과소 추정되는 경향을 보였다. 본 연구로 도출된 결과는 RGB 카메라의 경제성, 범용성을 고려하였을 때 LCC 추정에 적용할 경우가능성을 확인할 수 있었다. 본 연구에서 얻어진 결과는 인공지능 및 빅데이터 융합 기술을 적용한 AI지능화농업 기술로써 디지털 농업 등에 유용하게 활용될 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0