메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김채리 (청화대학교)
저널정보
영남중국어문학회 중국어문학 중국어문학 제88호
발행연도
2021.12
수록면
223 - 248 (26page)
DOI
10.15792/clsyn..88.202112.223

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Drawing on the theoretical framework and methodology of the Moscow Lexical Typology Group (MLexT), this paper examines the usage of the basic meanings of the spatial dimensional adjectives “LONG/SHORT” in thirteen languages. Among the thirteen languages investigated, the basic meanings of “LONG/SHORT” in all Asian and European languages can indicate the distance between any two points in space, including “one-dimensional linear objects”, “two-dimensional flat objects” and “three-dimensional objects with outstanding features”. This reflects the cognitive commonality of different countries from different regions and cultures. The basic meanings are the same in the thirteen languages, reflecting the stability of core vocabulary. However, when “LONG/SHORT” is used to describe a “three-dimensional object with an outstanding height”, there are differences among the thirteen languages. In Asian languages, “LONG/ SHORT” cannot describe “stature” except for Mongolian and Indonesian. In Indonesian, only “SHORT” can be used to describe “stature”, while in Mongolian, both “LONG/SHORT” can be used to describe it. Except for English, almost all European languages can use “LONG/SHORT” to describe “stature”. In English, only “SHORT” can be used to describe “stature”. We have thereby demonstrated cross-linguistic semantic commonalities and verified the feasibility and applicability of the MLexT theory in lexical typology. Meanwhile, the differences between different languages in different regions and the same region also reveal the differences in the socio-cultural context of human cognition.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0