메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Tayebeh Farhadi (Shahid Beheshti University of Medical Sciences) Seyed MohammadReza Hashemian (Shahid Beheshti University of Medical Sciences)
저널정보
한국약제학회 Journal of Pharmaceutical Investigation Journal of Pharmaceutical Investigation 제48권 제6호
발행연도
2018.11
수록면
639 - 655 (17page)
DOI
10.1007/s40005-017-0360-6

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Salmonella enterica is an important enteric pathogen that causes intestinal and systemic infections in warm-blooded animals. Due to different problems caused by administration of live attenuated vaccines, a DNA vaccine that is protective against S. enterica is desirable. By combining conserved antigenic determinant into a single vaccine, cross-protective immunity against many different immunogenic serovars can be achieved. This study proposed an in silico approach by assembling antigenic and conserved regions of SopB and GroEL proteins of S. enterica to induce multi-epitopic responses against the pathogen. In total, two unique and reliable antigenic regions of each protein were found and assembled in a chimeric DNA construct fused using appropriate linkers. Epitope predictions showed that the hypothetical synthetic construct could induce B and T-cell epitopes that yield a high immune response. Most regions of the chimeric construct were predicted to have high antigenic propensity and surface accessibility. The three-dimensional structure of the construct was generated and validated as a proper model which may define reliability, structural quality and conformation. DNA vaccine could cause concentration and increasing immune responses to critical epitopes and decrease adverse effects of vaccination. Successful in silico modeling has shown to be a promising approach to design robust vaccine targeting SopB and GroEL proteins of S. enterica.

목차

등록된 정보가 없습니다.

참고문헌 (66)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0