메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Rabie Abu Saleem (Jordan University of Science and Technology) Majdi I. Radaideh (University of Illinois at Urbana Champaign) Tomasz Kozlowski (University of Illinois at Urbana Champaign)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제52권 제12호
발행연도
2020.12
수록면
2,709 - 2,716 (8page)
DOI
https://doi.org/10.1016/j.net.2020.05.010

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Compositions of large nuclear cores (e.g. boiling water reactors) are highly heterogeneous in terms of fuelcomposition, control rod insertions and flow regimes. For this reason, they usually lack high order ofsymmetry (e.g. 1/4, 1/8) making it difficult to estimate their neutronic parameters for large spaces ofpossible loading patterns. A detailed hyperparameter optimization technique (a combination of manualand Gaussian process search) is used to train and optimize deep neural networks for the prediction ofthree neutronic parameters for the Ringhals-1 BWR unit: power peaking factors (PPF), control rod banklevel, and cycle length. Simulation data is generated based on half-symmetry using PARCS core simulatorby shuffling a total of 196 assemblies. The results demonstrate a promising performance by the deepnetworks as acceptable mean absolute error values are found for the global maximum PPF (~0.2) and forthe radially and axially averaged PPF (~0.05). The mean difference between targets and predictions forthe control rod level is about 5% insertion depth. Lastly, cycle length labels are predicted with 82% accuracy. The results also demonstrate that 10,000 samples are adequate to capture about 80% of the highdimensional space, with minor improvements found for larger number of samples. The promisingfindings of this work prove the ability of deep neural networks to resolve high dimensionality issues oflarge cores in the nuclear area

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0