메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Nur Syazwani Mohd Ali (Universiti Teknologi Malaysia) Khaidzir Hamzah (Universiti Teknologi Malaysia) Faridah Idris (Malaysian Nuclear Agency) Nor Afifah Basri (Universiti Teknologi Malaysia) Muhammad Syahir Sarkawi (Universiti Teknologi Malaysia) Muhammad Arif Sazali (Universiti Teknologi Malaysia) Hairie Rabir (Malaysian Nuclear Agency) Mohamad Sabri Minhat (Malaysian Nuclear Agency) Jasman Zainal (Universiti Teknologi Malaysia)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제54권 제2호
발행연도
2022.2
수록면
608 - 616 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There areseveral methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. Toovercome these limitations, artificial intelligence was introduced for parameter prediction. Previousstudies applied the neural network method to predict the PPF, but the publications using the ANFISmethod are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculatedusing TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioningmethods shows good predictive performances with R2 values in the range of 96%e97%, reveals the strongrelationship between the predicted and actual PPF values. The RMSE calculated also near zero. From thisstatistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as analternative method to develop a real-time monitoring system at TRIGA research reactors.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0