메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Abiodun Ayodeji (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory Harbin Engineering Unive) Yong-kuo Liu (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory Harbin Engineering Unive) Nan Chao (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory Harbin Engineering Unive) Li-qun Yang (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory Harbin Engineering Unive)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제52권 제12호
발행연도
2020.12
수록면
2,687 - 2,698 (12page)
DOI
https://doi.org/10.1016/j.net.2020.05.012

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Most of the machine learning-based intrusion detection tools developed for Industrial Control Systems(ICS) are trained on network packet captures, and they rely on monitoring network layer traffic alone forintrusion detection. This approach produces weak intrusion detection systems, as ICS cyber-attacks havea real and significant impact on the process variables. A limited number of researchers consider integrating process measurements. However, in complex systems, process variable changes could result fromdifferent combinations of abnormal occurrences. This paper examines recent advances in intrusiondetection algorithms, their limitations, challenges and the status of their application in critical infrastructures. We also introduce the discussion on the similarities and conflicts observed in the development of machine learning tools and techniques for fault diagnosis and cybersecurity in the protectionof complex systems and the need to establish a clear difference between them. As a case study, wediscuss special characteristics in nuclear power control systems and the factors that constraint the directintegration of security algorithms. Moreover, we discuss data reliability issues and present references anddirect URL to recent open-source data repositories to aid researchers in developing data-driven ICSintrusion detection systems

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0