메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정충길 (건국대학교) 김성준 (건국대학교)
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제59권 제4호
발행연도
2017.7
수록면
1 - 15 (15page)
DOI
https://doiorg/105389/KSAE2017594001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Eutrophication of surface waters is of concern worldwide, because it can result in many undesirable water-quality and ecological problems, such as hypoxic ‘dead’ zones and harmful algal blooms, both associated with considerable economic costs. In this study, we used LSM (Land Surface Model) to simulate nitrogen in five major rivers in the Southern Korean Peninsula. The main objective of this research was to enhance nitrogen data for input of LM3V model in South Korea. Input data for nitrogen fluxes were categorized into three sections including agriculture fertilizer, livestock manure, atmosphere deposition, biological fixation, and sewage pollutants were used as the nitrogen input. For using LM3V model, the nitrogen input data were regenerated by considering states of agriculture and industry in South Korea at a 1/8° resolution. Then, we simulated stream/river flows and N loads throughout the entire drainage networks in South Korea at a 1/8° resolution. By using the same parameters for the entire country (100,210 km2), composed of 5 river basins with varying climate and land use, the model simulates spatial (11 sites) and temporal (1999~2010) patterns of flows and nitrate-N loads are resonable by comparing observed flow and nitrate-N loads. The r (Pearson’s linear correlation) for water temperature, flow and nitrate-N at river were 080~0.93, 0.62~0.92 and 0.5~0.9 respectively. Based on enhanced N input data and model results, we find that LM3V model as land surface model can be applied in South Korea with interaction of atmosphere and land conditions.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0