메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Xie Mengxiao (Nanjing Medical University) Wu Zhijiao (Nanjing Medical University) Ying Shuai (Nanjing Medical University) Liu Longfei (Nanjing Medical University) Zhao Chenhui (Nanjing Medical University) Yao Chunlei (Nanjing Medical University) Zhang Zhiwei (Nanjing Medical University) Luo Can (Nanjing Medical University) Wang Wenbo (Nanjing Medical University) Zhao Dan (Nanjing Medical University) Zhang Jing (Nanjing Medical University) Qiu Wen (Nanjing Medical University)
저널정보
대한생화학·분자생물학회 Experimental and Molecular Medicine Experimental and Molecular Medicine 제53권
발행연도
2021.4
수록면
1 - 19 (19page)
DOI
10.1038/s12276-021-00589-9

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Glomerular mesangial cell (GMC) proliferation is a histopathological alteration in human mesangioproliferative glomerulonephritis (MsPGN) or in animal models of MsPGN, e.g., the rat Thy?1 nephritis (Thy-1N) model. Although sublytic C5b-9 assembly on the GMC membrane can trigger cell proliferation, the mechanisms are still undefined. We found that sublytic C5b-9-induced rat GMC proliferation was driven by extracellular signal?regulated kinase 1/2 (ERK1/2), sry-related HMG-box 9 (SOX9), and Cyclin D1. Here, ERK1/2 phosphorylation was a result of the calcium influx-PKC-α-Raf-MEK1/2 axis activated by sublytic C5b-9, and Cyclin D1 gene transcription was enhanced by ERK1/2-dependent SOX9 binding to the Cyclin D1 promoter (?582 to ?238?nt). In addition, ERK1/2 not only interacted with SOX9 in the cell nucleus to mediate its phosphorylation at serine residues 64 (a new site identified by mass spectrometry) and 181 (a known site), but also indirectly induced SOX9 acetylation by elevating the expression of general control non-repressed protein 5 (GCN5), which together resulted in Cyclin D1 synthesis and GMC proliferation. Moreover, our in vivo experiments confirmed that silencing these genes ameliorated the lesions of Thy?1N rats and reduced SOX9 phosphorylation, acetylation and Cyclin D1 expression. Furthermore, the renal tissue sections of MsPGN patients also showed higher phosphorylation or expression of ERK1/2, SOX9, and Cyclin D1. In summary, these findings suggest that sublytic C5b-9-induced GMC proliferation in rat Thy-1N requires SOX9 phosphorylation and acetylation via enhanced Cyclin D1 gene transcription, which may provide a new insight into human MsPGN pathogenesis.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0