메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
차기욱 (경북대학교) 홍원화 (경북대학교)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第39卷 第3號(通卷 第413號)
발행연도
2023.3
수록면
179 - 187 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Management of demolition waste (DW), which accounts for a large portion of waste generation (WG), is a very important issue. Therefore, many researchers tried to apply various ML algorithms to predict WG, and tried to find the decisive factors affecting WG. This study conducted a study on the development of optimal ML model for predicting demolition waste generation (DWG). In this study, decision tree (DT), random forest (RF), and gradient boost machine (GBM) algorithms were applied to develop ML models to predictive DWG. For this, data preprocessing was performed and the optimal hyper parameter was searched for each algorithm to derive an optimal ML model. In consideration of dataset size, leave one out cross validation (LOOCV) was applied to the model validation and mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R squared), and mean square error (MSE) were used as the performance evaluation index of the models. As a result of this study, it was found that the predictive performance of the RF model (MAE 72.837, MSE 12198.236, RMSE 110.446, R² 0.880) was better than one of DT (MAE 87.081, MSE 17348.052, RMSE 131.712, R² 0.829) and GBM (MAE 87.883, MSE 18175.125, RMSE 134.815, R² 0.821) models. The error from the observed mean (987.1806 kg m<SUP>-2</SUP>) was 8.82%, 7.38%, and 8.90% for the DT, RF, and GBM models, respectively. Therefore, it can be seen that the ML model using the DT-based algorithms is very good at predicting DWG. Finally, this study presented a reliable and optimal ML model for predicting DWG for a domestic waste management strategy.

목차

Abstract
1. 서론
2. 문헌 고찰
3. 데이터 수집 및 데이터셋 구축
4. DT 기반 ML 예측모델 개발 및 평가 방법
5. 해체폐기물 발생량 예측모델 성능 평가
5. 결론
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-540-001346399