메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
John Jeongseok Yang (Korea University College of Medicine) Hee-Jeong Youk (University of Ulsan College of Medicine) Yousun Chung (Kangdong Sacred Heart Hospital) Hyungsuk Kim (Seoul National University Hospital) Sang-Hyun Hwang (University of Ulsan College of Medicine) Heung-Bum Oh (University of Ulsan College of Medicine) Dae-Hyun Ko (University of Ulsan College of Medicine)
저널정보
대한임상검사정도관리협회 Journal of Laboratory Medicine And Quality Assurance Laboratory Medicine and Quality Assurance 제44권 제1호
발행연도
2022.3
수록면
48 - 54 (7page)
DOI
10.15263/jlmqa.2022.44.1.48

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: The geometric mean criteria (GC) is an alternative for assessing proficiency testing (PT) acceptability. A recent study applied GC to the PT results provided by the College of American Pathologists. We assessed the feasibility of using GC for anti-blood group antibody titration testing (ABT) in the Korean PT program. Methods: The results of the ABT performed in 2019 were reviewed using GC. GC was calculated as geometric mean (GM)±multiples of geometric standard deviation (GSD). The number of acceptable results obtained using GC was compared to that of the conventional mode criteria (MC, mode±1 second). Only the results with 30 or more peer group responses were included in the analyses. Results: A total of 27 PT results (anti-A: 13, anti-B: 14) were analyzed. The acceptable proportions from MC were 82.9%?100.0% for anti-A and 76.2%? 100.0% for anti-B. The GC criteria yielded acceptable results of 46.9%?97.6% (1 GSD), 88.6%?100.0% (2 GSD), and 97.3%?100.0% (3 GSD) for anti-A. For anti-B, 1 GSD, 2 GSD, and 3 GSD criteria resulted in 44.7%?90.6%, 90.6%? 100.0%, and 97.4%?100.0%, respectively. In general, acceptable results using MC were found to be distributed between 1 GSD and 2 GSD. Conclusions: The GC can be used as an alternative assessment criterion with a more robust statistical rationale. While conventional MC struggles with representing the central tendency of data, GC provide better visualization of the central tendency.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0