메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김우성 (건국대학교) 한준희 (부산대학교)
저널정보
강원대학교 경영경제연구소 아태비즈니스연구 아태비즈니스연구 제13권 제3호
발행연도
2022.9
수록면
293 - 309 (17page)
DOI
https://doi.org/10.32599/apjb.13.3.202209.293

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose - The purpose of this study is to explore the possibility of predicting the degree of smartphone overdependence based on mobile phone usage patterns. Design/methodology/approach - In this study, a survey conducted by Korea Internet and Security Agency(KISA) called “problematic smartphone use survey” was analyzed. The survey consists of 180 questions, and data were collected from 29,712 participants. Based on the data on the smartphone usage pattern obtained through the questionnaire, the smartphone addiction level was predicted using machine learning techniques. k-NN, gradient boosting, XGBoost, CatBoost, AdaBoost and random forest algorithms were employed. Findings - First, while various factors together influence the smartphone overdependence level, the results show that all machine learning techniques perform well to predict the smartphone overdependence level. Especially, we focus on the features which can be obtained from the smartphone log data (without psychological factors). It means that our results can be a basis for diagnostic programs to detect problematic smartphone use. Second, the results show that information on users’ age, marriage and smartphone usage patterns can be used as predictors to determine whether users are addicted to smartphones. Other demographic characteristics such as sex or region did not appear to significantly affect smartphone overdependence levels. Research implications or Originality - While there are some studies that predict smartphone overdependence level using machine learning techniques, but the studies only present algorithm performance based on survey data. In this study, based on the information gain measure, questions that have more influence on the smartphone overdependence level are presented, and the performance of algorithms according to the questions is compared. Through the results of this study, it is shown that smartphone overdependence level can be predicted with less information if questions about smartphone use are given appropriately.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0