메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Min Cheol Chang (Department of Physical Medicine and Rehabilitation Yeungnam University College of Medicine)
저널정보
영남대학교 의과대학 Journal of Yeungnam Medical Science Journal of Yeungnam Medical Science 제39권 제2호
발행연도
2022.4
수록면
98 - 107 (10page)
DOI
10.12701/yujm.2021.01368

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Stroke patients usually experience damage to multiple functions and a long rehabilitation period. Hence, there is a large volume of patient clinical information. It thus takes a long time for clinicians to identify the patient’s information and essential pieces of information may be overlooked. To solve this, we stored the essential clinical information of stroke patients in a blockchain and implemented the blockchain technology using the Java programming language. Methods: We created a mini blockchain to store the medical information of patients using the Java programming language. Results: After generating a unique pair of public/private keys for identity verification, a patient’s identity is verified by applying the Elliptic Curve Digital Signature Algorithm based on the generated keys. When the identity verification is complete, new medical data are stored in the transaction list and the generated transaction is verified. When verification is completed normally, the block hash value is derived using the transaction value and the hash value of the previous block. The hash value of the previous block is then stored in the generated block to interconnect the blocks. Conclusion: We demonstrated that blockchain can be used to store and deliver the patient information of stroke patients. It may be difficult to directly implement the code that we developed in the medical field, but it can serve as a starting point for the creation of a blockchain system to be used in the field.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0