메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이승현 (동아대학교) 박성호 (동아대학교) 이승재 (동아대학교) 이희원 (동아대학교 경영정보학과) 유성열 (부산가톨릭대학교) 이강배 (동아대학교)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제13권 제3호
발행연도
2022.3
수록면
23 - 31 (9page)
DOI
https://doi.org/10.15207/JKCS.2022.13.03.023

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 H해운사에서 제공받은 Starcool사의 실제 냉동 컨테이너 운영데이터를 분석하였다. H사의 현장 전문가와 인터뷰를 통해 4가지 고장 알람 중 Critical 및 Fatal Alarm만 고장으로 정의하였고, 냉동 컨테이너 특성상 모든 변수를 사용하는 것은 비용측면에서 비효율을 초래하는 것을 확인하였다. 이에 본 연구는 특성 중요도 및 PCA 기법을 통한 냉동 컨테이너 고장 탐지 방법을 제시한다. 모델의 성능 향상을 위해 XGBoost, LGBoost 등과 같은 트리계열 모델을 통해 변수 중요도(Feature Importance)를 기반으로 변수 선택(Feature selcetion)을 하고 선택되지 않은 변수는 PCA를 사용하여 전체 변수의 차원을 축소시켜 각 모델별로 지도학습을 수행한다. 부스팅 기반의 XGBoost, LGBoost 기법은 본 연구에서 제안하는 모델의 결과가 62개의 모든 변수를 사용한 지도 학습의 결과보다 재현율(Recall)이 각각 0.36, 0.39씩 향상되는 되는 결과를 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0