메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이경민 (신라대학교)
저널정보
한국융합신호처리학회 융합신호처리학회 논문지 융합신호처리학회 논문지 제23권 제2호
발행연도
2022.6
수록면
84 - 90 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
공작기계 상태 진단은 기계의 상태를 자동으로 감지하는 프로세스이다. 실제로 가공의 효율과 제조공정에서 제품의 품질은 공구 상태에 영향을 받으며 마모 및 파손된 공구는 공정 성능에 보다 심각한 문제를 일으키고 제품의 품질 저하를 일으킬 수 있다. 따라서 적절한 시기에 공구가 교체될 수 있도록 공구 마모 진행 및 공정 중 파손 방지 시스템 개발이 필요하다. 본 논문에서는 공구의 적절한 교체 시기 등을 진단하기 위해 딥러닝 기반의 계층적 컨볼루션 신경망을 이용하여 5가지 공구 상태를 진단하는 방법을 제안한다. 기계가 공작물을 절삭할 때 발생하는 1차원 음향 신호를 주파수 기반의 전력스펙트럼밀도 2차원 영상으로 변환하여 컨볼루션 신경망의 입력으로 사용한다. 학습 모델은 계층적 3단계를 거쳐 5가지 공구 상태를 진단한다. 제안한 방법은 기존의 방법과 비교하여 높은 정확도를 보였고, 실시간 연동을 통해 다양한 공작기계를 모니터링할 수 있는 스마트팩토리 고장 진단 시스템에 활용할 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0