메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
B. V. Feujofack Kemda (Université du Québec À Rimouski Rimouski) N. Barka (Université du Québec À Rimouski Rimouski) M. Jahazi (École de technologie supérieure) D. Osmani (AMH Canada Ltée)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International 제27권 제2호
발행연도
2022.2
수록면
487 - 502 (16page)
DOI
10.1007/s12540-021-00986-9

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Industry is constantly moving towards an increasing of production speed while minimizing production costs. This paperpresents an efficient method for minimizing production times and energies through optimization of process parameters inresistance spot welding (RSW). Two grades of steel were used in this study, ASTM A36 steel and A653 hot dipped galvanizedsteel. Welding was done in overlap configuration, grade for grade, while following complete factorial plans. Micrographicanalysis revealed welds microstructure while micro-indentation hardness tests enabled to establish hardness profiles alongweld nuggets. Tensile-shear tests have been carried out in order to quantify the mechanical strength of welds. Analysis ofvariance showed that welding current is the most significant parameter and contributes for about 70% to welds mechanicalstrength. The ratio of hardness in the fusion zone to nugget surface area was found to be correlated with the failure modeof welded specimens. On that basis, a multi-objective optimization of the process parameters, through the non-dominatedsorting genetic algorithm was performed. This optimization resulted in a reduction of current, electrode pressing force andwelding time of 10.58%, 13.59% and 32.61% respectively. Optimized parameters were then assessed trough tensile-sheartesting of welded specimens, all specimens passed the validation tests by experiencing failure in the base metal.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0