메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한정호 (연세대학교 의과대학) 윤소진 (연세대학교) 이혜선 (연세대학교) 박고은 (연세대학교) 임주희 (연세대학교) 신정은 (연세대학교) 은호선 (연세대학교) 박민수 (연세대학교) 이순민 (연세대학교)
저널정보
연세대학교 의과대학 Yonsei Medical Journal Yonsei Medical Journal 제63권 제7호
발행연도
2022.7
수록면
640 - 647 (8page)
DOI
10.3349/ymj.2022.63.7.640

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: The aims of the study were to develop and evaluate a machine learning model with which to predict postnatal growthfailure (PGF) among very low birth weight (VLBW) infants. Materials and Methods: Of 10425 VLBW infants registered in the Korean Neonatal Network between 2013 and 2017, 7954 infantswere included. PGF was defined as a decrease in Z score >1.28 at discharge, compared to that at birth. Six metrics [area under the re ceiver operating characteristic curve (AUROC), accuracy, precision, sensitivity, specificity, and F1 score] were obtained at five timepoints (at birth, 7 days, 14 days, 28 days after birth, and at discharge). Machine learning models were built using four different tech niques [extreme gradient boosting (XGB), random forest, support vector machine, and convolutional neural network] to compareagainst the conventional multiple logistic regression (MLR) model. Results: The XGB algorithm showed the best performance with all six metrics across the board. When compared with MLR, XGBshowed a significantly higher AUROC (p=0.03) for Day 7, which was the primary performance metric. Using optimal cut-off points,for Day 7, XGB still showed better performances in terms of AUROC (0.74), accuracy (0.68), and F1 score (0.67). AUROC valuesseemed to increase slightly from birth to 7 days after birth with significance, almost reaching a plateau after 7 days after birth. Conclusion: We have shown the possibility of predicting PGF through machine learning algorithms, especially XGB. Such mod els may help neonatologists in the early diagnosis of high-risk infants for PGF for early intervention.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0