메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Marziyeh Hatamkhani (Arak University)
저널정보
대한수학회 대한수학회보 대한수학회보 제59권 제4호
발행연도
2022.7
수록면
917 - 928 (12page)
DOI
10.4134/BKMS.b210534

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $R$ be a commutative Noetherian ring and $I$ an ideal of $R$. In this paper, we study colocalization of generalized local homology modules. We intend to establish a dual case of local-global principle for the finiteness of generalized local cohomology modules. Let $M$ be a finitely generated $R$-module and $N$ a representable $R$-module. We introduce the notions of the representation dimension $r^I (M, N)$ and artinianness dimension $a^I (M, N)$ of $M,N$ with respect to $I$ by $r^I (M, N)= \inf\{i\in \mathbb{N}_0 : H^I_i(M,N) \text{ is not representable}\}$ and $a^I (M, N)= \inf\{i\in \mathbb{N}_0 : H^I_i(M,N)\text{ is not artinian}\}$ and we show that $a^I (M, N)=r^I (M, N)$ $=\inf\{r^{IR_{\fp}}(M_{\fp},_{\fp}N) : \fp\in \Spec(R)\}\geq \inf\{a^{IR_{\fp}}(M_{\fp},_{\fp}N) : \fp\in \Spec(R)\}$. Also, in the case where $R$ is semi-local and $N$ a semi discrete linearly compact $R$-module such that $N/\bigcap_{t>0} I^tN$ is artinian we prove that $\inf\{i: H^I_i(M,N) \text{ is not minimax}\}\!=\!\inf\{r^{IR_{\fp}}(M_{\fp},_{\fp}N) : \fp\in \Spec(R)\setminus\Max(R)\}.$

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0