메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Muhammad Sajjad Khan (University of Ulsan) Insoo Koo (University of Ulsan)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.13 No.2
발행연도
2015.6
수록면
74 - 80 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
In cognitive radios, spectrum sensing plays an important role in accurately detecting the presence or absence of a licensed user. However, the intervention of malicious users (MUs) degrades the performance of spectrum sensing. Such users manipulate the local results and send falsified data to the data fusion center; this process is called spectrum sensing data falsification (SSDF). Thus, MUs degrade the spectrum sensing performance and increase uncertainty issues. In this paper, we propose a method based on the Hausdorff distance and a similarity measure matrix to measure the difference between the normal user evidence and the malicious user evidence. In addition, we use the Dempster-Shafer theory to combine the sets of evidence from each normal user evidence. We compare the proposed method with the k-means and Jaccard distance methods for malicious user detection. Simulation results show that the proposed method is effective against an SSDF attack.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. SYSTEM MODEL
Ⅲ. PROPOSED COOPERATIVE SPECTRUM SENSING BASED ON HAUSDORFF DISTANCE AND D-S THEORY OF COMBINATION
Ⅳ. SIMULATION RESULTS AND ANALYSIS
Ⅴ. CONCLUSION
REFERENCES

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000403770