메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ryohei Suzuki (Akita Prefectural University) Hirokazu Madokoro (Iwate Prefectural University) Stephanie Nix (Iwate Prefectural University) Kazuki Saruta (Akita Prefectural University) Takashi K. Saito (Akita Prefectural University) Kazuhito Sato (Akita Prefectural University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,521 - 1,526 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Automated driving is attracting attention as a solution to road traffic problems. At Level 3, a take-over request (TOR) is issued to transfer driving operations from the system to a driver when it is unable to continue. In such cases, the driver must be monitored to ensure a proper takeover of the driving operations. This study aims to measure drivers’ brain
activity before and after the TOR by analyzing time-series signals of brain activity with machine learning algorithms. We developed driving scenarios with a TOR trigger on a rainy expressway at night. We used a portable functional near-infrared spectroscopy (fNIRS) device to measure cerebral blood oxygenation changes (ΔHbO) at the frontal pole. We used a long short-term memory (LSTM) network on this data for time-series learning and prediction after multivariate and multilayering modifications to improve accuracy. We conducted driving questionnaires beforehand and used two classification methods to categorize subjects into several groups with similar driving characteristics. Experimental results of a ΔHbO drop revealed that brain activity tended to decrease during automated driving. Moreover, success in obstacle avoidance and mean squared error (MSE) for each driver group demonstrated that the behavior toward an obstacle after the TOR trigger influenced changes in brain activity.

목차

Abstract
1. INTRODUCTION
2. RELATED STUDIES
3. PROPOSED SYSTEM
4. SUBJECT CLASSIFICATION
5. RESULTS FOR EACH DRIVER GROUP
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0