메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Changsoo Yu (Korea Institute of Science and Technology) Beomju Shin (Korea Institute of Science and Technology) Chung G. Kang (Korea University) Jung Ho Lee (Korea Institute of Science and Technology) Hankyeol Kyung (Korea Institute of Science and Technology) Taehun Kim (Korea Institute of Science and Technology) Taikjin Lee (Korea Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
911 - 915 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The study of indoor localization technology using smart phone has been continuously studied. Fingerprinting is a representative indoor positioning technology. This technology estimates the location by comparing Radio Signal Strength (RSS) information received in one-shot at a specific location with the previously constructed Radio Map. Since the RSS received in one-shot is used, the ability to discriminate signals according to space is low. To solve this problem, the use of RSS spatial patterns based on Pedestrian Dead Reckoning (PDR) improves signal discrimination according to space and increases accuracy. However, since PDR is used, there is a problem that it is difficult to use a spatial pattern if PDR distortion occurs due to a heading drift error and a change motion. We propose an indoor positioning technology using 1D Convolutional Neural Network (CNN) and Bi-directional Long Short Term Memory (BLSTM). We estimated the position by learning the 1D RSS pattern. In order to generate a large amount of data, we used the pre-built Radio Map. We use a model that combines 1D CNN and BLSTM. 1D CNN is used to extract RSS patterns, and BLSTM is used to learn the relationship of sequential data in both directions. Through this, it is possible to estimate the position using only the RSS. To verify the proposed technology, we compared it with the previous technology. As a result, the previous technology showed 2.19m error and the proposed technology showed 4.663m error. However, the calculation speed is 30 times faster than the proposed technology. It was confirmed that indoor positioning technology using deep learning technology can provide position information with only 1D RSS pattern.

목차

Abstract
1. INTRODUCTION
2. PROPOSED TECHNOLOGY
3. RESULT
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0