메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Howoong Jun (Seoul National University) Sangil Lee (Seoul National University) Songhwai Oh (Seoul National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
829 - 834 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a new method for keypoint detection using neuromorphic camera data. Robust keypoint detection in diverse conditions is a major issue for visual simultaneous localization and mapping (SLAM), place recognition, and computer vision. Recently, many methods adopt supervised learning to solve the problem. However, it is hard to define the exact reference keypoints on natural scenes, so the training process can be ambiguous for the problem. To handle this issue, we propose a new method named EventPointNet which is trained from data collected from a neuromorphic camera, also known as an event-based camera. Since the event-based camera captures natural edge points from any scenes regardless of illumination and viewpoint changes, the data can be used as proper references for keypoint detection. Therefore, a network trained with these data can detect distinct keypoints on a gray-scale image captured from a conventional camera. The proposed method is validated by comparing with both handcrafted and learning-based approaches on HPatches dataset. The experimental results show that EventPointNet detects more valid keypoints than the other methods in terms of both qualitative and quantitative results, especially on the illumination conditions with 1.31% higher matching score compared to the second best method. We also perform the visual odometry experiments on the KITTI dataset to show that EventPointNet can be applied to robotic applications. In particular, EventPointNet shows a reduction of 30.74% in the trajectory error compared to the second best algorithm.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. EVENTPOINTNET
4. EXPERIMENTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0