메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Nobuaki Endo (Shibaura Institute of Technology) Takashi Yoshimi (Shibaura Institute of Technology) Koichiro Hayashi (IHI) Hiroki Murakami (IHI)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
518 - 522 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Much of the polishing work is done manually by skilled workers. It is not easy to teach robots to perform the detailed work of theirs and to configure and operate an appropriate control system to achieve this, and automation of this process has been delayed. Polishing is performed by pressing a rotating tool against the workpiece to be machined. To achieve this motion, PID control is used in the controllers of many robots. However, to determine the appropriate control gain, it is necessary to repeatedly adjust the control gain according to the processing target and processing conditions. The purpose of this research is to introduce Model Predictive Control (MPC) as a new control system for polishing robots. MPC is a control that predicts control output using a model of the control target. Therefore, we considered the target force value could be achieved without changing the MPC parameters when the force condition, a machining condition, is changed. In this paper, control block diagrams were created in MATLAB Simulink to apply MPC. The block diagram was then mounted on the actual machine to check whether it could be pressed with appropriate force, and the differences from PID were evaluated.

목차

Abstract
1. INTRODUCTION
2. DESCRIPTION OF POLISHING ROBOTS
3. DIFFERENCE BETWEEN PID CONTROL AND MPC IN POLISHING ROBOTS
4. CONFIGURATION OF MPC FOR APPLICATION TO ROBOT SYSTEM
5. STUDY OF APPLICATION TO ACTUAL EQUIPMENT, RESULTS AND CONSIDERATIONS
6. COMPARISON OF EXPERIMENTAL RESULTS BETWEEN PID AND MPC
7. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0