메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조경빈 (강원대학교) 정영준 (강원대학교) 이창기 (강원대학교) 류지희 (한국정보통신연구원) 임준호 (한국정보통신연구원)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.1
발행연도
2023.1
수록면
32 - 39 (8page)
DOI
10.5626/JOK.2023.50.1.32

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
상호참조해결은 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 end-to-end 모델이 주로 연구되었으나, BERT의 입력 길이 제한으로 긴 문서에 대해서는 성능이 낮아지는 문제가 있다. 따라서, 본 논문에서는 다음의 모델을 제안하였다. 우선 긴 문서를 512 이하의 토큰으로 쪼개어 기존의 Local BERT에서 단어의 1차 문맥 표현을 얻고, 이를 다시 연결하여 원래 문서에 대한 Global Positional Embedding 값을 계산하여 더해준다. 그리고 이렇게 연결된 문맥 표현을 Global BERT layer를 통해 최종적으로 전체 문맥 표현 계산하여 상호참조해결을 수행하였다. 실험 결과, 본 논문에서 제안한 모델이 기존 모델과 유사한 성능을 보이면서, GPU 메모리 사용량은 1.4배 감소하고 속도는 2.1배 향상되었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 긴 문서를 위한 BERT 기반 End-to-End 상호참조해결 모델
4. 실험 및 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0