메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황주효 (창원대학교) 진교홍 (창원대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제27권 제1호
발행연도
2023.1
수록면
8 - 14 (7page)
DOI
10.6109/jkiice.2023.27.1.8

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 자기지도 학습 기반의 CutPaste 기법은 정상 이미지에서 특정 패치를 자르고 붙이는 방법으로 합성 데이터를 생성한 뒤 이상탐지를 수행하였다. 그러나 이런 방식으로 생성된 합성데이터는 패치의 경계에 뚜렷한 차이가 나타나는 문제가 발생된다. 이러한 문제를 해결하기 위한 NSA 기법은 Poisson Blending을 통해 자연스러운 합성 데이터를 생성하여 더 높은 이상탐지 성능을 달성하였다. 그러나 NSA 기법은 클래스마다 조정해야하는 하이퍼 파라미터가 많은 단점을 가지고 있다. 본 논문에서는 합성 패치의 크기를 매우 작게 하는 단순한 방법으로 정상과 유사한 합성 데이터를 생성하였다. 이 때 패치가 매우 지역적으로 합성되기 때문에, 지역적인 특징을 학습하는 모델을 사용하면 합성 데이터에 쉽게 과적합 될 수 있다. 따라서 전역적인 특징을 학습하는 gMLP를 사용하여 이상탐지를 수행하였고, 단순한 합성 방법으로도 기존 자기 지도 학습 기법보다 더 높은 성능을 달성할 수 있었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 기존 자기지도 학습 기반 이상탐지 기법
Ⅲ. 합성 데이터 생성 및 이상탐지 모델
Ⅳ. 실험 및 결과
Ⅴ. 결론
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000371713