메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이태희 (Hanyang University) 황우성 (Hanyang University) 최명렬 (Hanyang University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제4호
발행연도
2022.12
수록면
124 - 129 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 사용자들에 의해 촬영된 피부이미지를 가공하여 데이터 세트를 구축하고, 제안한 영상처리 기법에 의해 모공 특징이미지를 생성하여, CNN(Convolution Neural Network) 모델 기반의 모공 상태 등급 예측 시스템을 구현한다. 본 논문에서 활용하는 피부이미지 데이터 세트는, 피부미용 전문가의 육안 분류 기준에 근거하여, 모공 특징에 대한 등급을 라벨링 하였다. 제안한 영상처리 기법을 적용하여 피부이미지로 부터 모공 특징 이미지를 생성하고, 모공 특징 등급을 예측하는 CNN 모델의 학습을 진행하였다. 제안한 CNN 모델에 의한 모공 특징은 전문가의 육안 분류 결과와 유사한 예측 결과를 얻었으며, 비교 모델(Resnet-50)에 의한 결과보다 적은 학습시간과 높은 예측결과를 얻었다. 본 논문의 본론에서는 제안한 영상처리 기법과 CNN 적용의 결과에 대해 서술하며, 결론에서는 제안한 방법에 대한 결과와 향후 연구방안에 대해 서술한다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-056-000303504