메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
채수원 (부산대학교) 배상무 (부산대학교) 남유진 (부산대학교)
저널정보
대한설비공학회 대한설비공학회 학술발표대회논문집 대한설비공학회 2022년도 하계학술발표대회 논문집
발행연도
2022.6
수록면
614 - 617 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Recently, in Korea, the development of new and renewable energy utilization technology is actively progressing in order to realize carbon neutrality and to cope with the problem of energy supply and demand. Among them, photovoltaic-thermal (PVT) is attracting attention as a technology that can simultaneously produce heat and electricity to recover waste heat and increase power production efficiency. However, the existing PVT system has a problem in that waste heat recovery and power generation efficiency is low because the circulating water is controlled by ON-OFF or PID (Proportional integral derivative control) controller based on the set temperature. Therefore, this study developed an optimal control algorithm to increase the waste heat recovery and power generation efficiency of PVT. The optimal control algorithm was determined through the collection and power generation trends according to the flow rate of circulating water, and was developed using machine learning. As a result of comparing the normalized data with the development model, the maximumerror was confirmed as Cv(RMSE) was 23.3 and the correlation coefficient was 0.81, indicating stable control. On the other hand, energy saving was evaluated on the basis of heat-collecting production compared to power consumption, and it was confirmed that 59.1% was improved compared to the notation model. Therefore, the optimal algorithm developed in this study is expected to contribute to the reduction of pump power and energy consumption of hot water supply as it enables efficient operation of PVT.

목차

Abstract
1. 서론
2. 연구방법
3. 개발모델 구축 및 해석결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0