메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정학 (경희대학교) 이은미 (경희대학교) 임선영 (경희대학교)
저널정보
한국체육과학회 한국체육과학회지 한국체육과학회지 제31권 제6호 (인문사회과학 편)
발행연도
2022.12
수록면
581 - 595 (15page)
DOI
10.35159/kjss.2022.12.31.6.581

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to analyze the unique movement form and characteristics of dance experts through Quality of movement that reveal individuality. In order to achieve this research purpose, six research participants were selected as a judgment sampling method among convenience sampling methods. The movement analysis tool used the Laban Movement Analysis (LMA) theory. First, in the Quality of movement of Korean dance experts, a unique movement form appeared, and it was analyzed as a Quality of movement that emphasizes the inner side of the movement. Second, in the Body element shown Quality of movement characteristic was formed by combining the Breath Support and Grounding elements based on Homolateral to form a habituated Body. Third, in the Effort element shown Quality of movement characteristic was as Vision Drive, which consists of Body movement-oriented movements. Fourth, in the Shape element, it was analyzed as an important factor in determining the characteristics of movement according to the Quality of movement characteristic Following Shape Flow and Bulging Shape Flow. Fifth, in the Space element shown Quality of movement characteristic were found to create Indirect Space Effort and Dynamosphere. Also, analyzed as Central Pathway, Central Spatial Tension, Mid-Reach, and Middle level. In conclusion, by identifying the form of movement through Laban Movement Analysis (LMA) theory, it is expected that individual training methods can be presented to dance experts and standards for appreciating dance works as social values.

목차

Abstract
Ⅰ. 서론
Ⅱ. 연구방법
Ⅲ. 결과 및 논의
Ⅳ. 결론 및 제언
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-692-000325891