메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ju-Won Bae (Korea Maritime & Ocean University) Ju-Hyeon Seong (Korea Maritime & Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제46권 제6호
발행연도
2022.12
수록면
439 - 446 (8page)
DOI
10.5916/jamet.2022.46.6.439

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In harsh environments where high-intensity work is performed, predicting the work intensity based on the vital signs of a worker can be useful in preventing accidents. Considering existing worker management systems are analyzed using set thresholds, they cannot resolve variables caused by individual differences. Therefore, we propose an algorithm to estimate the work intensity of workers based on their heart rate and body temperature using a deep learning-based 1D CNN-LSTM model. The proposed algorithm uses time-series signals of 60 s to accurately estimate the work intensity by considering the time-series characteristics. In addition, the proposed algorithm considers the individual differences in bio-signals by extracting and using data from the exercise and rest states of workers. To verify the performance of the proposed algorithm, we compared estimation performance factors such as model accuracy, precision, recall, and F1 score with those of various models; the results showed a high estimation accuracy of 99.96%. We believe the proposed algorithm can help minimize damage by preemptively responding to unexpected accidents that may occur at work sites by accurately estimating the work intensity based on the individual differences among workers.

목차

Abstract
1. Introduction
2. Related research and theories
3. Proposed Algorithm
4. Results
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-559-000333008