메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Keunsoo Heo (The Catholic University of Korea) Yunju Kim (The Catholic University of Korea) Changwoo Lee (The Catholic University of Korea)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.8 No.2
발행연도
2019.4
수록면
121 - 125 (5page)
DOI
10.5573/IEIESPC.2019.8.2.121

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to maximize the image quality when using existing image contents in the latest display devices, it is necessary to improve the resolution and intensity of the images. In this paper, we propose an efficient deep neural network to restore the image intensity when there are too few bits per pixel to provide more intensity. We investigate an efficient implementation and training method for U-net to maximize the performance of restoring image intensity. We show that we can significantly improve the perceptual quality of the restored image by using VGG loss as well as MSE loss to train U-net. The perceptual loss of images can be efficiently dealt with by using VGG loss. The convergence of the proposed method is analyzed, and extensive computer simulations show that the proposed method significantly improves the perceptual quality of the restored image.

목차

Abstract
1. Introduction
2. Restoration of Image Intensity and Deep Learning
3. Proposed Method for Restoring Image Intensity Based on Deep Learning
4. Performance Evaluation
5. Conclusion
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0