메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임종수 (국립산림과학원) 신중훈 (국립산림과학원) 강대익 (산림청)
저널정보
한국기후변화학회 한국기후변화학회지 Journal of Climate Change Research Vol.13 No.6
발행연도
2022.12
수록면
817 - 827 (11page)
DOI
10.15531/KSCCR.2022.13.6.817

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Paris Agreement recommends its member parties to enhance transparency in Greenhouse Gas (GHG) inventory by sector. IPCC guidelines provide recommendations for reducing uncertainties of GHG emissions and removals for the accurate assessment. Thus, this study aimed to assess the uncertainties of estimated carbon stocks for living biomass in the forestry sector. Living biomass is an essential indicator for monitoring GHG removals in the LULUCF sector. This study made a comparative assessment of the uncertainty by applying error propagation methods (simple multiplication, addition and subtraction) and the Monte Carlo Simulation (MCS) suggested in the IPCC guidelines. The findings showed that the overall uncertainty for the simple multiplication in the error propagation was found to be as high as ±28.0% due to higher uncertainties of country-specific emission factors. In contrast, the overall uncertainty was as low as ±3.6% for the addition and subtraction considering the sensitiveness of activity data and emission factors as explanatory variables, while that for the MCS was at around ±6.0%. Despite the slightly higher uncertainty for MCS compared with addition and subtraction, it is reasonable to apply uncertainty assessment using MCS considering the international reliability and comparability. Additionally, since living biomass causes various error sources including measurement error and volume equations by tree species, there is a need for research to assessing different error sources for uncertainty.

목차

ABSTRACT
1. 서론
2. 재료 및 방법
3. 결과 및 고찰
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-453-000288854