메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이선정 (국립산림과학원) 고치웅 (국립산림과학원) 임종수 (국립산림과학원) 강진택 (국립산림과학원)
저널정보
한국기후변화학회 한국기후변화학회지 Journal of Climate Change Research Vol.10 No.4
발행연도
2019.12
수록면
463 - 471 (9page)
DOI
10.15531/ksccr.2019.10.4.463

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study was conducted to suggest application of a new stem volume for the forest carbon stocks in South Korea. We recalculated stem volume using the Kozak parameter and equations based on the old stem volume (approach one) and new stem volume (approach two). Also, we calculated carbon stock and changes using the estimated stem volume and country‐specific emission factors. As a result, growing stock with approach two was higher than that with approach one, and there was a statistically significant difference (p<0.05). The result indicates that the new volume table (approach two) will reduce error when assessing wood resources of the middle DBH class or higher and also will improve the accuracy of forest growing stocks. The annual carbon stock change (m³/ha/yr.) by tree species was 5.7 ± 0.74 in Pinus densiflora, 5.65 ± 0.37 in Quercus mongolica, and 9.54 ± 1.08 in Larix kaempferi by approach two, for which the annual carbon stock change (Ct/ha/yr.) was 2.28 ± 0.30 for Pinus densiflora, 3.98 ± 0.26 for Quercus mongolica, and 3.79 ± 0.43 for Larix kaempferi. According to the Paris Agreement, there is a need to improve the accuracy of greenhouse gas inventory in the forest sector. Moreover, the current estimation algorithm for stem volume of the National Forest Information System (NFIS) should be enhanced by updating the stem volume table. Then it is necessary to estimate the growing stocks based on new stem volume table. This study is a pilot study for Gangwon province, and nationwide pilot research is needed in the future.

목차

ABSTRACT
1. 서론
2. 재료 및 방법
3. 결과 및 고찰
4. 결론
REFERENCES

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-453-000267613