메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ju Hwan Park (Seoul National University of Science and Technology) Won Hee Jeong (Seoul National University of Science and Technology) Byung Joon Choi (Seoul National University of Science and Technology)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.22 No.6
발행연도
2022.12
수록면
387 - 394 (8page)
DOI
10.5573/JSTS.2022.22.6.387

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Artificial neural networks (ANNs) have been studied to mimic biological neurons because of the limitations of conventional computing. Among various ANNs, the spike neural network (SNN) is advantageous owing to its energy efficiency. To demonstrate the effectiveness of the SNN, circuits of integrate-and-fire (IF), leaky IF (LIF), and Hodgkin-Huxley model have been studied using various methods. These circuits contain an external capacitor to mimic membrane behavior. In this study, it is expected that the LIF circuits can be simplified by adopting a diffusive memristor made of Pt/Ag-doped HfO<SUB>x</SUB>/Pt. Volatile threshold switching was observed and modeled by performing electrical measurements. Their capacitive properties and relaxation behavior were interpreted by the internal capacitor and dissolution of the conducting filament. Pulse trains were adjusted to confirm the possibility of implementing an LIF neuron without an external capacitor.

목차

Abstract
I. INTRODUCTION
II. METHODS
III. RESULTS
IV. CONCLUSION
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-569-000241027