메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
민태홍 (Gyeongsang National University) 박동희 (Daviss) 이정준 (Gyeongsang National University) 서상윤 (Korea Elevator Safety Agency) 강성우 (Inha University) 최병근 (Gyeongsang National University)
저널정보
한국소음진동공학회 한국소음진동공학회논문집 한국소음진동공학회논문집 제32권 제6호(통권 269호)
발행연도
2022.12
수록면
535 - 543 (9page)
DOI
10.5050/KSNVE.2022.32.6.535

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
An elevator is a machine composed of various components. Extensive research has been conducted to determine the optimal life cycle of the components; however, there is a lack of methodological research on the diagnosis of the elevator condition. In this study, an efficient method for diagnosing faults through feature-based analysis on elevator vibration measurement three-axis sensor systems is proposed. The obtained data consists of normal and fault signals, and a sample is secured through a sampling process in a constant speed section of the signal. Subsequently, features with statistical and shape information are extracted from sampled signals and finally, machine learning consisting of Genetic Algorithm (GA)-based feature selection and Support Vector Machine (SVM) is applied to classify faults and evaluate diagnostic possibilities.

목차

ABSTRACT
1. 서론
2. 대상 모델 및 데이터
3. 특징 분석
4. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-424-000227978