메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장윤아 (연세대학교)
저널정보
한국일본어학회 일본어학연구 일본어학연구 제74집
발행연도
2022.12
수록면
137 - 156 (20page)
DOI
10.14817/jlak.2022.74.137

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This study categorized question expressions produced in daily conversations in Korean and Japanese and conducted an empirical comparative analysis to inquire into how and on which position the question expressions are used in conversations. According to the results of the study, it was confirmed that <request for judgment (Yes/No)> is used with the highest frequency in the same manner both in Korean and Japanese, while similarities are observed in the position of appearance and functions of <request for judgment (Yes/No)>, <expression of emotions>, <request for confirmation>, and <request for consent>. However, the relative use frequency of question expressions turned out to be higher in Korean conversations than in Japanese conversations. In addition, in Japanese conversations, there was a high proportion of using question expressions to ask for consent from the counterpart and question expressions to express uncertainty about one"s own ideas or opinions, whereas in Korean conversations, the rate of using question expressions to ask for explanations or confirmation from the counterpart was high. In the case of <request for explanation>, <expression of response>, and <expression of ideas>, differences between Korean and Japanese were observed depending on not only the position within the conversation where they were used, but also by what means they were used. It was possible to confirm that the functions vary in terms of development of conversations depending on the position within the conversation where the question expressions were used.

목차

Abstract
1. 들어가며
2. 선행연구 및 연구목적
3. 대화자료 및 분석방법
4. 분석결과
5. 나가며
참고문헌
要旨

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0