메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Onur Senol (Ataturk University) Mevlüt Albayrak (Ataturk University)
저널정보
한국광학회 Current Optics and Photonics Current Optics and Photonics Vol.3 No.2
발행연도
2019.4
수록면
150 - 153 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Larynx cancer is a potentially terminal and severe type of neck and head cancer in which malignant cells start to grow and spread upwards in the larynx, or voice box. Smoking tobacco, drinking hot beverages and drinking alcohol are the main risk factors for these tumors. In this study, we aimed to develop a precise, accurate and rapid chemometrics assisted Raman spectroscopy method for diagnosis of larynx cancer in deparaffinized tissue samples. In the proposed method, samples were deparaffinized and 20 microns of each tissue were located on a coverslip. Both healthy (n = 13) and cancerous tissues (n = 13) were exposed to a Raman laser (785 nm) and excitations were recorded between wavenumbers of 50~1500 cm<SUP>-1</SUP>. An Orthogonal Partial Least Square algorithm was applied to evaluate the Raman spectrum obtained. Sensitivity and specificity of the proposed method is high enough with the aid of Principal Component Analysis (PCA) to test the whole model. Healthy and cancerous tissues were accurately and precisely clustered. A rapid, easy and precise diagnosis algorithm was developed for larynx cancer. By this method, some useful data about differences in biomolecules of each group (phospholipids, amides, tyrosine, phenylalanine collagen etc.) was also obtained from the spectra. It is claimed that the optimized metho has a great potential for clustering and separating tumor tissues from healthy ones. This novel, rapid, precise and objective diagnosis method may be an alternative for the conventional methods in literature for diagnosis of larynx cancer.

목차

I. INTRODUCTION
II. METHOD
III. RESULTS
IV. CONCLUSION
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-425-000230821