메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hoseong Jeong (University of Seoul) Seongwoo Ji (University of Seoul) Jae Hyun Kim (University of Seoul) Seung‑Ho Choi (University of Seoul) Inwook Heo (University of Seoul) Kang Su Kim (University of Seoul)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.16 No.6
발행연도
2022.11
수록면
855 - 873 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Bond-slip is an important characteristic that determines the stiffness, displacement, and load-bearing capacity of a reinforced concrete (RC) beam. It is essential for performing a precise numerical analysis of the beam. In most cases, bond-slip models can define the bond–slip curve only when there are experimental data. However, many bond test data have been obtained from pull-out tests, and the dominant view is that the bond-slip behavior observed in the pull-out test is quite different from that in an actual RC beam. Therefore, a mapping function that makes it possible to estimate the bond-slip behaviors of beam specimens using those of pull-out specimens was developed in this study. A total of 255 pull-out specimen data and 75 beam specimen data were collected from previous studies, and the importance and influence of each feature of the two groups were analyzed using random forest and K-means clustering. The mapping function was derived using genetic programming, and its accuracy was verified through a comparison with existing models. The proposed model exhibits a high degree of accuracy in estimating bond-slip and bond strength in beam specimens and can provide useful information for understanding the difference in bond–slip behaviors between the two groups.

목차

Abstract
1 Introduction
2 Backgrounds
3 Materials and Methods
4 Results and Discussion
5 Verification
6 Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0