메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chengwen Zhang (Southeast University) Qing Chun (Southeast University) Ao Sun (Southeast University) Yijie Lin (Southeast University) HaoYu Wang (Southeast University)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.16 No.5
발행연도
2022.9
수록면
659 - 687 (29page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The bond–slip model plays an important role in the structural analysis of reinforced concrete structures. However, many factors affect the bond–slip behavior, which means that a large number of tests are required to establish an accurate bond–slip model. This paper aims to establish a data-driven method for the prediction of the bond–slip model of historical reinforced concrete with few test specimens and many features. Therefore, a new Mahalanobis-Meta-learning Net algorithm was proposed, which can be used to solve the implicit regression problem in few-shot learning. Compared with the existing algorithms, the Mahalanobis-Meta-learning Net achieves fast convergence, accurate prediction and good generalization without performing a large number of tests. The algorithm was applied to the prediction task of the bond–slip model of square rebar-reinforced concrete. First, the first large pretraining database for the bond–slip model, BondSlipNet, was established containing 558 samples from the existing literature. The BondSlipNet database can be used to provide a priori knowledge for learning. Then, another database, named SRRC-Net, was obtained by 16 groups of pull-out tests with square rebar. The SRRC-Net database can be used to provide the posteriori knowledge. Finally, based on the databases, the algorithm not only successfully predicted the bond–slip model of square rebar-reinforced concrete, but also that of the other 23 types of reinforced concrete. The research results can provide a scientific basis for the conservation of square rebar-reinforced concrete structures and can contribute to the bond–slip model prediction of the other types of reinforced concrete structures.

목차

Abstract
1 Introduction
2 Dataset Preparation
3 Training Network Construction
4 Results and Discussion
5 Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0