메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Rizwan Gul (Quaid-i-Azam University) Muhammad Shabir (Quaid-i-Azam University) Wali Khan Mashwani (Academic Block-III Kohat University of Science & Technology) Hayat Ullah (Academic Block-III Kohat University of Science & Technology)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.22 No.3
발행연도
2022.9
수록면
303 - 324 (22page)
DOI
10.5391/IJFIS.2022.22.3.303

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The rough set (RS) theory is a successful approach for studying the uncertainty in data. In contrast, the bipolar soft sets (BSS) can deal with the uncertainty, as well as bipolarity of the data in many situations. In 2018, Karaaslan and Çağman proposed bipolar soft rough sets (BSRSs), a hybridization of RS and BSS. However, certain shortcomings with BSRS violate Pawlak’s RS theory. To overcome these shortcomings, the concept of the modified bipolar soft rough set (MBSRS) has been proposed in this study. Moreover, this idea has been investigated through illustrative examples, where the important properties are inspected deeply. Furthermore, certain significant measures associated with MBSRS are also provided. Finally, an application of the MBSRS to multi-attribute group decision-making (MAGDM) problems is proposed. In addition, among various alternatives, an algorithm for decision-making accompanied by a practical example is presented as the optimal alternative . A brief comparative analysis of the proposed approach with some existing techniques is also provided to indicate the validity, flexibility, and superiority of the suggested MAGDM model.

목차

Abstract
1. Introduction
2. Preliminary Concepts
3. Novel Type of Bipolar Soft Rough Sets Approximation
4. Some Important Measures Associated with MBSRS
5. MAGDM Using MBSRS
6. Comparison Analysis and Discussion
7. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-003-000186748