메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김종환 (한양대학교) 여도엽 (한국원자력연구원)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2022년 한국컴퓨터정보학회 하계학술대회 논문집 제30권 2호
발행연도
2022.7
수록면
11 - 14 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 회귀 문제에서 예측값들의 분산을 줄이기 위한 딥뉴럴 네트워크 구조를 제안한다. 일반적인 회귀 문제에서 딥뉴럴 네트워크 학습 시, 하나의 입력에 대한 레이블 값을 이용하여 학습한다. 본 눈문에서는 하나의 입력에 대한 레이블 값뿐만 아니라 두 입력에 대한 레이블 값들의 차이를 학습시키는 딥뉴럴 네트워크 구조를 제안한다. 통계학 이론을 통하여 예측값들의 분산이 줄어든다는 것을 증명한다. 또한, 배관곡관의 감육두께를 예측하는 문제를 통해 제안된 네트워크의 성능을 검증한다. 일반적인 딥뉴럴 네트워크 구조를 이용하였을 때에 비하여 제안한 네트워크 구조를 이용하였을 때, 회귀 문제의 예측값들의 분산이 감소함을 확인한다.

목차

요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. The Experimental Results
Ⅴ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0