메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김유라 (한국전자기술연구원) 김용환 (한국전자기술연구원)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 하계학술대회
발행연도
2022.6
수록면
229 - 232 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Video-based Point Cloud Compression(V-PCC) 부호화기의 세그먼트 정제(Refining segmentation) 과정은 3D 세그먼트를 2D 패치 데이터로 효율적으로 변환하기 위한 V-PCC 부호화기의 핵심 파트이지만, 많은 연산량을 필요로 하는 모듈이다. 때문에 이미 TMC2 에 Fast Grid-based refine segmentation 과정이 구현되어 있으나, 아직도 세그먼트 정제 기술의 연산량은 매우 높은 편이다. 본 논문에서는 현재 TMC2 에 구현되어 있는 Fast Grid-based Refine Segmentation 을 살펴보고, 복셀(Voxel) 타입에 따른 특성에 맞춰 두 가지 조건을 추가하는 고속화 알고리즘을 제안한다. 실험 결과 압축성능(BD-BR)은 TMC2 와 거의 차이를 보이지 않았지만, 모듈 단위 평균 10% 연산량이 절감되는 것을 확인하였다.

목차

요약
1. 서론
2. V-PCC 의 세그먼트 정제
3. 제안하는 고속 FGBRS 방법
4. 실험결과
5. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-001632513