메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sangkeun Jung (Chungnam National University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.16 No.2
발행연도
2022.6
수록면
63 - 78 (16page)
DOI
10.5626/JCSE.2022.16.2.63

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Natural language understanding (NLU) is a fundamental technology for implementing natural interfaces. The embedding of sentences and correspondence between text and its extracted semantic knowledge, called semantic frame, has recently shown that a semantic vector representation is key in the implementation or support of robust NLU systems. Herein, we propose an extension of cluster-aware modeling with various types of pre-trained transformers for consideration of the many-to-1 relationships of text-to-semantic frames and semantic clusters. To attain this, we define the semantic cluster, and design the relationships between cluster members to learn semantically meaningful vector representations. In addition, we introduce novel ensemble methods to improve the semantic vector applications around NLU, i.e., similarity-based intent classification and a semantic search. Furthermore, novel semantic vector and corpus visualization techniques are presented. Using the proposed framework, we demonstrate that the proposed model can learn meaningful semantic vector representations in ATIS, SNIPS, SimM, and Weather datasets.

목차

Abstract
I. INTRODUCTION
II. SEMANTIC FRAME SENTENCES AND SEMANTIC CLUSTERS
III. CLUSTER-AWARE SEMANTIC VECTOR LEARNING
IV. APPLICATIONS
V. EXPERIMENTS
VI. RELATED STUDIES
VII. CONCLUSION
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0