메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전자통신연구원 [ETRI] ETRI Journal ETRI Journal 제44권 제4호
발행연도
2022.8
수록면
0 - 0 (0page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The agricultural sector is completely different from other sectors since it completely relies on various natural and climatic factors. Climate changes have many effects, including lack of annual rainfall and pests, heat waves, changes in sea level, and global ozone/atmospheric CO2 fluctuation, on land and agriculture in similar ways. Climate change also affects the environment. Based on these factors, farmers chose their crops to increase productivity in their fields. Many existing agricultural ontologies are either domain-specific or have been created with minimal vocabulary and no proper evaluation framework has been implemented. A new agricultural ontology focused on subdomains is designed to assist farmers using Jaccard relative extractor (JRE) and Naïve Bayes algorithm. The JRE is used to find the similarity between two sentences and words in the agricultural documents and the relationship between two terms is identified via the Naïve Bayes algorithm. In the proposed method, the preprocessing of data is carried out through natural language processing techniques and the tags whose dimensions are reduced are subjected to rule-based formal concept analysis and mapping. The subdomain ontologies of weather, pest, and soil are built separately, and the overall agricultural ontology are built around them. The gold standard for the lexical layer is used to evaluate the proposed technique, and its performance is analyzed by comparing it with different state-of-the-art systems. Precision, recall, F-measure, Matthews correlation coefficient, receiver operating characteristic curve area, and precision-recall curve area are the performance metrics used to analyze the performance. The proposed methodology gives a precision score of 94.40% when compared with the decision tree(83.94%) and K-nearest neighbor algorithm(86.89%) for agricultural ontology construction.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0