메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황재기 (광운대학교) 강성주 (광운대학교) 정광수 (광운대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.49 No.8
발행연도
2022.8
수록면
627 - 632 (6page)
DOI
10.5626/JOK.2022.49.8.627

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
FPN (Feature Pyramid Network)은 객체 검출의 다중 스케일 문제를 해결하기 위한 특성 맵 융합 기법이다. 그러나, FPN은 인접한 해상도에 초점을 맞추어 특성 맵 융합을 수행하기 때문에 인접하지 않은 계층에 포함된 의미 정보가 희석되는 문제가 있다. 본 논문에서는 다중 스케일 객체 검출을 위한 Graph Convolution Network (GCN) 기반의 특성 맵 융합 기법을 제안한다. 제안된 GCN 기반 방법은 학습 가능한 인접 행렬 가중치에 따라 모든 계층의 특성 맵 정보를 동적으로 융합한다. 인접 행렬 가중치는 객체의 스케일 정보를 적응적으로 반영하기 위해 다중 스케일 attention 메커니즘을 기반으로 생성된다. 특성 맵 융합 과정은 인접 행렬과 특성 노드 행렬 간 행렬 곱 연산을 통해 수행된다. 실험을 통해 기존 FPN 방법보다 PASCAL-VOC 벤치마크 데이터 셋에서 다중 스케일 객체 검출 성능을 향상시키는 것을 보임으로서 제안 기법의 성능을 검증하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 기법
4. 실험 및 성능 평가
5. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0