메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
하재준 (한양솔라에너지) 이준혁 (한양솔라에너지) 오주영 (한양솔라에너지) 이동근 (한양솔라에너지)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제22권 제7호
발행연도
2022.7
수록면
55 - 62 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
페로브스카이트 태양전지는 4차 산업혁명으로 사물인터넷, 가상환경 등의 증가에 따른 전력 수요가 급증하면서 점진적으로 고갈되어가는 석유, 석탄, 천연가스 등의 화석연료를 대체할 태양에너지, 풍력, 수력, 해양에너지, 바이오에너지, 수소에너지 등의 신재생 에너지 분야에서 연구가 활발한 부분이다. 페로브스카이트 태양전지는 페로브스카이트 구조를 가진 유-무기 하이브리드 물질을 사용하는 태양전지 소자로 고효율, 저가의 용액 및 저온 공정으로 기존의 실리콘 태양전지를 대체할 수 있는 장점들이 있다. 기존의 경험적 방법으로 예측한 광흡수층 박막을 최적화하기 위해서 소자 특성 평가를 통해 신뢰도를 검증해야 한다. 그러나 광흡수층 박막 소자 특성 평가 비용이 많이 소요되므로 시험 횟수에 제약이 따른다. 이러한 문제점을 해결하기 위하여 광흡수층 박막 최적화의 보조 수단으로 머신러닝이나 인공지능 모델을 이용하여 명확하고 타당한 모델의 개발과 적용 가능성이 무한하다고 본다. 이 연구에서는 페로브스카이트 태양전지의 광 흡수층 박막 최적화를 추정하기 위하여 서포트 벡터 머신의 선형 커널, 가우시안 커널, 비선형 다항식 커널, 시그모이드 커널의 회귀분석 모델을 비교하여 커널 함수별 정확도 차이를 검증하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 연구 방법
Ⅲ. 결론 및 시사점
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0