메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제7호(통권 제220호)
발행연도
2022.7
수록면
1 - 7 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 대용량 데이터를 프로그램 자체에서 생성시키면서 구동되는 빅데이터 프로그램, 머신 러닝 프로그램 같은 응용 프로그램의 사용이 일상화됨에 따라 기존의 메인 메모리만으로는 메모리가 부족하여 프로그램의 빠른 실행이 어려운 경우가 발생하고 있다. 특히, 코로나 변이 바이러스 발생으로 염기서열 전체의 유전 변이 여부를 분석해야 하는 상황에는 더욱 빠르게 결과를 도출해야 하는 필요성이 대두되었다. 대용량 데이터를 병렬실행으로 빠른 결과를 필요로 하는 전장유전체(WGS; Whole Genome Sequencing) 분석 방법에 기존 SSD에서 대용량 데이터를 처리하는 것이 아닌 자체 개발한 메모리풀 MOCA host adapter가 장착된 컴퓨팅 시스템에 적용하여 성능을 측정한 결과 기존 SSD 시스템에 비해 16%의 성능 향상이 있었다. 그리고, 그 외의 다양한 벤치마크 시험에서도 워크플로우의 task별 SortSampleBam, ApplyBQSR, GatherBamFiles등 메모리풀 MOCA host adapter가 장착된 컴퓨팅 시스템에서도 SSD를 사용한 경우보다 IO 성능이 각각 92.8%, 80.6%, 32.8% 실행시간 단축을 보였다. 전장유전체파이프라인 분석같이 대용량 데이터 분석시 본 연구에서 개발한 메모리풀 MOCA host adapter가 장착된 컴퓨팅 시스템에서 분석할 경우 런타임(run time)시 발생하는 측정 지연을 줄일 수 있을 것으로 판단된다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0