메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박종원 (Juice) 김동삼 (Juice) 김준호 (Juice)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제7호
발행연도
2022.7
수록면
1,098 - 1,101 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the development of computer music notation programs, when drawing sheet music, it is often drawn using a computer. However, there are still many use of hand-written notations for educational purposes or to quickly draw sheet music such as listening and dictating. In previous studies, OMR focused on recognizing the printed music sheet made by music notation program. the result of handwritten OMR with camera is poor because different people have different writing methods, and lens distortion. In this study, as a pre-processing process for recognizing handwritten music sheet, we propose a method for recognizing a staff using linear regression and a method for recognizing a bar using CNN. F₁ scores of staff recognition and barline detection are 99.09% and 95.48%, respectively. This methodologies are expected to contribute to improving the accuracy of handwriting.

목차

ABSTRACT
Ⅰ. 서론
Ⅱ. 손사보 광학음악 인식
Ⅲ. 보표인식
Ⅳ. 마디인식
Ⅴ. 결론
REFERENCES

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001496446