메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Huiyong Bak (Inha University) Sangmin Lee (Inha University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.11 No.2
발행연도
2022.4
수록면
92 - 96 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, an effective system for discriminating violent scenes in movies from audio signals alone is proposed. The technology for automatic discrimination of violent scenes is one of the most crucial aspects of media filtering, protecting users from undesired media. Previous studies have conducted violent scene discrimination using a mel spectrogram and 2D convolutional neural networks (CNNs); however, the mel spectrogram cannot extract mutual information from audio, and 2D CNNs are unsuitable for audio. Therefore, these models do not yield good performance. The system proposed in this paper extracts audio features by using Wav2vec 2.0, which can extract mutual information from audio. The features of the extracted audio are inputted to a 1D CNN and long short-term memory (LSTM), which are algorithms suitable for audio, and violent scenes are discriminated through fully connected and softmax layers. To evaluate the proposed system, violent scenes are discriminated using the Violent Movie Scenes Dataset (VMD). As a result, the accuracy of the proposed system when discriminating violent scenes is 96.25%, providing better performance than in previous studies.

목차

Abstract
1. Introduction
2. Technologies of the Proposed System
3. Violent Scene Discrimination
4. Experiment
5. Conclusion
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0