메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yvonne Iradukunda (The Nelson Mandela African Institution of Science and Technology) Elizabeth Mkoba (The Nelson Mandela African Institution of Science and Technology) Silas Mirau (The Nelson Mandela African Institution of Science and Technology)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.11 No.3
발행연도
2022.6
수록면
222 - 230 (9page)
DOI
10.5573/IEIESPC.2022.11.3.222

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Poor monitoring of levels in juice tanks is among the challenges that beverage industries face when pumping liquid from one tank to another. This leads to spilling fluids, faulty juice tests, and industrial accidents. To keep track of the liquid level in a tank, various approaches have been used. Existing technologies are costly and not interactive, and the majority do not benefit individuals with physical disabilities when manual monitoring is needed. The purpose of this paper is to present an optimal smart tank juice-level monitoring system that can be used in beverage industries. The system is able to monitor the juice level within a tank and regulate a pump using voice commands via Alexa and the Amazon Echo Dot. The proposed system was tested and validated, with key findings being that the developed prototype prevented overflowing, accidents, and changes in juice flavor during the dilution process. This paper contributes to the body of knowledge for food and beverage industries in that engineers and operators of beverage industries can monitor the level of juice in a tank, as well as enhance communication when pumping juice from one tank to another in real time.

목차

Abstract
1. Introduction
2. Related Works
3. Materials and Methods
4. Results and Discussion
5. Conclusion and Future Research
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0