메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lely Herlina (Universitas Sultan Ageng Tirtayasa) Machfud (Bogor Agricultural University) Elisa Anggraeni (Bogor Agricultural University) Sukardi (Bogor Agricultural University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.21 No.1
발행연도
2022.3
수록면
1 - 19 (19page)
DOI
10.7232/iems.2022.21.1.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study discusses the integration model of production and distribution planning in the shrimp agroindustry supply chain, consisting of four echelons: shrimp suppliers, shrimp agroindustry, logistics provider companies, and buyers. The shrimp agroindustry supply chain is an essential part of the supply chain of processed product food, which transforms raw shrimp into various processed shrimp frozen products. One form of collaboration between supply chain actors is the integration of production and distribution planning activities. A model is developed to determine the flow of goods from each echelon, the number of processed shrimp products in the agroindustry, and the supplies of processed shrimp products. The bi-objective mixed-integer linear programming is proposed to describe the characteristics of the problem to minimize the total supply chain costs and maximize service level. Non-dominated sorting genetic algorithm II (NSGA-II) is designed to solve the shrimp agroindustry supply chain problem. The sample problem from the shrimp agroindustry in East Java, Indonesia, is applied to exhibit an algorithm’s efficiency. The result shows the best solution for the total supply chain is 1.75 trillion, and the service level is 1,502,264.5.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. RESEARCH METHOD
4. COMPUTATIONAL RESULT AND DISCUSSION
5. CONCLUSION AND FUTURE RESEARCH
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0